Neural Network-Derived Potts Models for Structure-Based Protein Design using Backbone Atomic Coordinates and Tertiary Motifs
Author:
Li Alex J.ORCID, Lu MindrenORCID, Desta IsraelORCID, Sundar VikramORCID, Grigoryan GevorgORCID, Keating Amy E.ORCID
Abstract
AbstractDesigning novel proteins to perform desired functions, such as binding or catalysis, is a major goal in synthetic biology. A variety of computational approaches can aid in this task. An energy-based framework rooted in the sequence-structure statistics of tertiary motifs (TERMs) can be used for sequence design on pre-defined backbones. Neural network models that use backbone coordinate-derived features provide another way to design new proteins. In this work, we combine the two methods to make neural structure-based models more suitable for protein design. Specifically, we supplement backbone-coordinate features with TERM-derived data, as inputs, and we generate energy functions as outputs. We present two architectures that generate Potts models over the sequence space: TERMinator, which uses both TERM-based and coordinate-based information, and COORDinator, which uses only coordinate-based information. Using these two models, we demonstrate that TERMs can be utilized to improve native sequence recovery performance of neural models. Furthermore, we demonstrate that sequences designed by TERMinator are predicted to fold to their target structures by AlphaFold. Finally, we show that both TERMinator and COORDinator learn notions of energetics, and these methods can be fine-tuned on experimental data to improve predictions. Our results suggest that using TERM-based and coordinate-based features together may be beneficial for protein design and that structure-based neural models that produce Potts energy tables have utility for flexible applications in protein science.CodeCode will be made publically available at https://github.com/alexjli/terminator_public
Publisher
Cold Spring Harbor Laboratory
Reference31 articles.
1. Frappier V and Keating A. E 2021. Data-driven computational protein design. 2. Siegel J. B , Zanghellini A , Lovick H. M , Kiss G , Lambert A. R , St.Clair J. L , Gallaher J. L , Hilvert D , Gelb M. H , Stoddard B. L , Houk K. N , Michael F. E , and Baker D 2010. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. 3. Cao L , Goreshnik I , Coventry B , Case J. B , Miller L , Kozodoy L , Chen R. E , Carter L , Walls A. C , Park Y. J , Strauch E. M , Stewart L , Diamond M. S , Veesler D , and Baker D 2020. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. 4. Leman J. K , Weitzner B. D , Lewis S. M , Adolf-Bryfogle J , Alam N , Alford R. F , Aprahamian M , Baker D , Barlow K. A , Barth P , Basanta B , Bender B. J , Blacklock K , Bonet J , Boyken S. E , Bradley P , Bystroff C , Conway P , Cooper S , Correia B. E , Coventry B , Das R , Jong R. M. D , Dimaio F , Dsilva L , Dunbrack R , Ford A. S , Frenz B , Fu D. Y , Geniesse C , Goldschmidt L , Gowthaman R , Gray J. J , Gront D , Guffy S , Horowitz S , Huang P.-S , Huber T , Jacobs T. M , Jeliazkov J. R , Johnson D. K , Kappel K , Karanicolas J , Khakzad H , Khar K. R , Khare S. D , Khatib F , Khramushin A , King I. C , Kleffner R , Koepnick B , Kortemme T , Kuenze G , Kuhlman B , Kuroda D , Labonte J. W , Lai J. K , Lapidoth G , Leaver-Fay A , Lindert S , Linsky T , London N , Lubin J. H , Lyskov S , Maguire J , Malmström L , Marcos E , Marcu O , Marze N. A , Meiler J , Moretti R , Mulligan V. K , Nerli S , Norn C , Ó’Conchúir S , Ollikainen N , Ovchinnikov S , Pacella M. S , Pan X , Park H , Pavlovicz R. E , Pethe M , Pierce B. G , Pilla K. B , Raveh B , Renfrew P. D , Burman S. S. R , Rubenstein A , Sauer M. F , Scheck A , Schief W , Schueler-Furman O , Sedan Y , Sevy A. M , Sgourakis N. G , Shi L , Siegel J. B , Silva D.-A , Smith S , Song Y , Stein A , Szegedy M , Teets F. D , Thyme S. B , Wang R. Y.-R , Watkins A , Zimmerman L , and Bonneau R 2020. Macromolecular modeling and design in rosetta: recent methods and frameworks. 5. Ingraham J , Garg V. K , Barzilay R , and Jaakkola T 2019. Generative models for graph-based protein design.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|