Neural Network-Derived Potts Models for Structure-Based Protein Design using Backbone Atomic Coordinates and Tertiary Motifs

Author:

Li Alex J.ORCID,Lu MindrenORCID,Desta IsraelORCID,Sundar VikramORCID,Grigoryan GevorgORCID,Keating Amy E.ORCID

Abstract

AbstractDesigning novel proteins to perform desired functions, such as binding or catalysis, is a major goal in synthetic biology. A variety of computational approaches can aid in this task. An energy-based framework rooted in the sequence-structure statistics of tertiary motifs (TERMs) can be used for sequence design on pre-defined backbones. Neural network models that use backbone coordinate-derived features provide another way to design new proteins. In this work, we combine the two methods to make neural structure-based models more suitable for protein design. Specifically, we supplement backbone-coordinate features with TERM-derived data, as inputs, and we generate energy functions as outputs. We present two architectures that generate Potts models over the sequence space: TERMinator, which uses both TERM-based and coordinate-based information, and COORDinator, which uses only coordinate-based information. Using these two models, we demonstrate that TERMs can be utilized to improve native sequence recovery performance of neural models. Furthermore, we demonstrate that sequences designed by TERMinator are predicted to fold to their target structures by AlphaFold. Finally, we show that both TERMinator and COORDinator learn notions of energetics, and these methods can be fine-tuned on experimental data to improve predictions. Our results suggest that using TERM-based and coordinate-based features together may be beneficial for protein design and that structure-based neural models that produce Potts energy tables have utility for flexible applications in protein science.CodeCode will be made publically available at https://github.com/alexjli/terminator_public

Publisher

Cold Spring Harbor Laboratory

Reference31 articles.

1. Frappier V and Keating A. E 2021. Data-driven computational protein design.

2. Siegel J. B , Zanghellini A , Lovick H. M , Kiss G , Lambert A. R , St.Clair J. L , Gallaher J. L , Hilvert D , Gelb M. H , Stoddard B. L , Houk K. N , Michael F. E , and Baker D 2010. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction.

3. Cao L , Goreshnik I , Coventry B , Case J. B , Miller L , Kozodoy L , Chen R. E , Carter L , Walls A. C , Park Y. J , Strauch E. M , Stewart L , Diamond M. S , Veesler D , and Baker D 2020. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors.

4. Leman J. K , Weitzner B. D , Lewis S. M , Adolf-Bryfogle J , Alam N , Alford R. F , Aprahamian M , Baker D , Barlow K. A , Barth P , Basanta B , Bender B. J , Blacklock K , Bonet J , Boyken S. E , Bradley P , Bystroff C , Conway P , Cooper S , Correia B. E , Coventry B , Das R , Jong R. M. D , Dimaio F , Dsilva L , Dunbrack R , Ford A. S , Frenz B , Fu D. Y , Geniesse C , Goldschmidt L , Gowthaman R , Gray J. J , Gront D , Guffy S , Horowitz S , Huang P.-S , Huber T , Jacobs T. M , Jeliazkov J. R , Johnson D. K , Kappel K , Karanicolas J , Khakzad H , Khar K. R , Khare S. D , Khatib F , Khramushin A , King I. C , Kleffner R , Koepnick B , Kortemme T , Kuenze G , Kuhlman B , Kuroda D , Labonte J. W , Lai J. K , Lapidoth G , Leaver-Fay A , Lindert S , Linsky T , London N , Lubin J. H , Lyskov S , Maguire J , Malmström L , Marcos E , Marcu O , Marze N. A , Meiler J , Moretti R , Mulligan V. K , Nerli S , Norn C , Ó’Conchúir S , Ollikainen N , Ovchinnikov S , Pacella M. S , Pan X , Park H , Pavlovicz R. E , Pethe M , Pierce B. G , Pilla K. B , Raveh B , Renfrew P. D , Burman S. S. R , Rubenstein A , Sauer M. F , Scheck A , Schief W , Schueler-Furman O , Sedan Y , Sevy A. M , Sgourakis N. G , Shi L , Siegel J. B , Silva D.-A , Smith S , Song Y , Stein A , Szegedy M , Teets F. D , Thyme S. B , Wang R. Y.-R , Watkins A , Zimmerman L , and Bonneau R 2020. Macromolecular modeling and design in rosetta: recent methods and frameworks.

5. Ingraham J , Garg V. K , Barzilay R , and Jaakkola T 2019. Generative models for graph-based protein design.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3