Light Attention Predicts Protein Location from the Language of Life

Author:

Stärk HannesORCID,Dallago ChristianORCID,Heinzinger MichaelORCID,Rost BurkhardORCID

Abstract

AbstractSummaryAlthough knowing where a protein functions in a cell is important to characterize biological processes, this information remains unavailable for most known proteins. Machine learning narrows the gap through predictions from expert-designed input features leveraging information from multiple sequence alignments (MSAs) that is resource expensive to generate. Here, we showcased using embeddings from protein language models (pLMs) for competitive localization prediction without MSAs. Our lightweight deep neural network architecture used a softmax weighted aggregation mechanism with linear complexity in sequence length referred to as light attention (LA). The method significantly outperformed the state-of-the-art (SOTA) for ten localization classes by about eight percentage points (Q10). So far, this might be the highest improvement of just embeddings over MSAs. Our new test set highlighted the limits of standard static data sets: while inviting new models, they might not suffice to claim improvements over the SOTA.AvailabilityOnline predictions are available at http://embed.protein.properties. Predictions for the human proteome are available at https://zenodo.org/record/5047020. Code is provided at https://github.com/HannesStark/protein-localization.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. Unified rational protein engineering with sequence-based deep representation learning

2. DeepLoc: prediction of protein subcellular localization using deep learning

3. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs

4. Bahdanau, D. , Cho, K. , and Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Bengio, Y. and LeCun, Y. (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1409.0473.

5. Bepler, T. and Berger, B. Learning protein sequence embeddings using information from structure. arXiv:1902.08661 [cs, q-bio, stat], October 2019. URL http://arxiv.org/abs/1902.08661. arXiv: 1902.08661.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3