FLIP: Benchmark tasks in fitness landscape inference for proteins

Author:

Dallago ChristianORCID,Mou Jody,Johnston Kadina E.,Wittmann Bruce J.,Bhattacharya Nicholas,Goldman Samuel,Madani Ali,Yang Kevin K.

Abstract

AbstractMachine learning could enable an unprecedented level of control in protein engineering for therapeutic and industrial applications. Critical to its use in designing proteins with desired properties, machine learning models must capture the protein sequence-function relationship, often termed fitness landscape. Existing bench-marks like CASP or CAFA assess structure and function predictions of proteins, respectively, yet they do not target metrics relevant for protein engineering. In this work, we introduce Fitness Landscape Inference for Proteins (FLIP), a benchmark for function prediction to encourage rapid scoring of representation learning for protein engineering. Our curated tasks, baselines, and metrics probe model generalization in settings relevant for protein engineering, e.g. low-resource and extrapolative. Currently, FLIP encompasses experimental data across adeno-associated virus stability for gene therapy, protein domain B1 stability and immunoglobulin binding, and thermostability from multiple protein families. In order to enable ease of use and future expansion to new tasks, all data are presented in a standard format. FLIP scripts and data are freely accessible at https://benchmark.protein.properties.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3