Fine-tuning protein language models boosts predictions across diverse tasks

Author:

Schmirler RobertORCID,Heinzinger MichaelORCID,Rost BurkhardORCID

Abstract

AbstractPrediction methods inputting embeddings from protein language models have reached or even surpassed state-of-the-art performance on many protein prediction tasks. In natural language processing fine-tuning large language models has become the de facto standard. In contrast, most protein language model-based protein predictions do not back-propagate to the language model. Here, we compare the fine-tuning of three state-of-the-art models (ESM2, ProtT5, Ankh) on eight different tasks. Two results stand out. Firstly, task-specific supervised fine-tuning almost always improves downstream predictions. Secondly, parameter-efficient fine-tuning can reach similar improvements consuming substantially fewer resources at up to 4.5-fold acceleration of training over fine-tuning full models. Our results suggest to always try fine-tuning, in particular for problems with small datasets, such as for fitness landscape predictions of a single protein. For ease of adaptability, we provide easy-to-use notebooks to fine-tune all models used during this work for per-protein (pooling) and per-residue prediction tasks.

Funder

Technische Universität München

Deutsche Forschungsgemeinschaft

AbbVie Inc. | AbbVie Deutschland

Publisher

Springer Science and Business Media LLC

Reference76 articles.

1. Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5998–6008 (2017).

2. OpenAI. GPT-4 Technical Report. Preprint at https://arxiv.org/abs/2303.08774 (2023).

3. Anil, R. et al. PaLM 2 Technical Report. Preprint at https://arxiv.org/abs/2305.10403 (2023).

4. Bubeck, S. et al. Sparks of Artificial General Intelligence: Early experiments with GPT-4. Preprint at https://arxiv.org/abs/2303.12712 (2023).

5. Liu, Z. et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. Proc. IEEE/CVF international conference on computer vision 10012–10022 (2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3