Modeling drug combination effects via latent tensor reconstruction

Author:

Wang Tianduanyi,Szedmak Sandor,Wang Haishan,Aittokallio Tero,Pahikkala Tapio,Cichonska Anna,Rousu Juho

Abstract

AbstractMotivationCombination therapies have emerged as a powerful treatment modality to overcome drug resistance and improve treatment efficacy. However, the number of possible drug combinations increases very rapidly with the number of individual drugs in consideration which makes the comprehensive experimental screening infeasible in practice. Machine learning models offer time- and cost-efficient means to aid this process by prioritising the most effective drug combinations for further pre-clinical and clinical validation. However, the complexity of the underlying interaction patterns across multiple drug doses and in different cellular contexts poses challenges to the predictive modelling of drug combination effects.ResultsWe introduce comboLTR, highly time-efficient method for learning complex, nonlinear target functions for describing the responses of therapeutic agent combinations in various doses and cancer cell-contexts. The method is based on a polynomial regression via powerful latent tensor reconstruction. It uses a combination of recommender system-style features indexing the data tensor of response values in different contexts, and chemical and multi-omics features as inputs. We demonstrate that comboLTR outperforms state-of-the-art methods in terms of predictive performance and running time, and produces highly accurate results even in the challenging and practical inference scenario where full dose-response matrices are predicted for completely new drug combinations with no available combination and monotherapy response measurements in any training cell line.Availability and implementationcomboLTR code is available at https://github.com/aalto-ics-kepaco/ComboLTRContacttianduanyi.wang@aalto.fi; juho.rousu@aalto.fi

Publisher

Cold Spring Harbor Laboratory

Reference30 articles.

1. Combinatorial drug therapy for cancer in the post-genomic era

2. A community computational challenge to predict the activity of pairs of compounds

3. Higher-order factorization machines;In Advances in Neural Information Processing Systems,2016

4. A survey of the structures of US FDA approved combination drugs;Journal of Medicinal Chemistry,2018

5. Tensor rank and the ill-posedness of the best low-rank approximation problem;SIAM J. Matrix Anal. Appl.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3