Movement-Preceding Neural Activity under Parametrically Varying Levels of Time Pressure

Author:

Trovò BiancaORCID,Visser Yvonne,İşcan ZaferORCID,Schurger AaronORCID

Abstract

AbstractSelf-initiated movements are known to be preceded by the readiness potential or RP, a gradual increase in surface-negativity of cortical potentials that can begin up to 1 second or more before movement onset. The RP has been extensively studied for decades, and yet we still lack a clear understanding of its functional role. Attempts to model the RP as an accumulation-to-bound process suggest that this signal is a by-product of time-locking to crests in neural noise rather than the outcome of a pre-conscious decision to initiate a movement. One parameter of the model accounts for the imperative to move now, with cued movements having a strong imperative and purely spontaneous movements having no imperative. Two different variants of the model have been proposed, and both predict a decrease in the (negative) amplitude of the early RP as the imperative grows stronger. In order to test this empirically, we conducted an experiment where subjects produced self-initiated movements under varying levels of time pressure, and we investigated the amplitude, shape, and latency of the RP as a function of the imperative to move, operationalised as a time limit. We identified distinct changes in the amplitude of the early RP that grew non-linearly as the time limit grew shorter. Thus these data did not support the prediction made by the model. In addition, our results confirm that the shape of the RP is not stereotypically negative, being either positive or absent in about half of the subjects.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3