Pre‐movement event‐related potentials and multivariate pattern of EEG encode action outcome prediction

Author:

Ody Edward1ORCID,Kircher Tilo1,Straube Benjamin1,He Yifei1

Affiliation:

1. Department of Psychiatry and Psychotherapy University of Marburg Marburg Germany

Abstract

AbstractSelf‐initiated movements are accompanied by an efference copy, a motor command sent from motor regions to the sensory cortices, containing a prediction of the movement's sensory outcome. Previous studies have proposed pre‐motor event‐related potentials (ERPs), including the readiness potential (RP) and its lateralized sub‐component (LRP), as potential neural markers of action feedback prediction. However, it is not known how specific these neural markers are for voluntary (active) movements as compared to involuntary (passive) movements, which produce much of the same sensory feedback (tactile, proprioceptive) but are not accompanied by an efference copy. The goal of the current study was to investigate how active and passive movements are distinguishable from premotor electroencephalography (EEG), and to examine if this change of neural activity differs when participants engage in tasks that differ in their expectation of sensory outcomes. Participants made active (self‐initiated) or passive (finger moved by device) finger movements that led to either visual or auditory stimuli (100 ms delay), or to no immediate contingency effects (control). We investigated the time window before the movement onset by measuring pre‐movement ERPs time‐locked to the button press. For RP, we observed an interaction between task and movement. This was driven by movement differences in the visual and auditory but not the control conditions. LRP conversely only showed a main effect of movement. We then used multivariate pattern analysis to decode movements (active vs. passive). The results revealed ramping decoding for all tasks from around −800 ms onwards up to an accuracy of approximately 85% at the movement. Importantly, similar to RP, we observed lower decoding accuracies for the control condition than the visual and auditory conditions, but only shortly (from −200 ms) before the button press. We also decoded visual vs. auditory conditions. Here, task is decodable for both active and passive conditions, but the active condition showed increased decoding shortly before the button press. Taken together, our results provide robust evidence that pre‐movement EEG activity may represent action‐feedback prediction in which information about the subsequent sensory outcome is encoded.

Funder

Deutsche Forschungsgemeinschaft

Hessisches Ministerium für Wissenschaft und Kunst

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3