Hot, unpredictable weather interacts with land use to restrict the distribution of the Yellow-tailed Black-Cockatoo

Author:

Amin Rahil J.ORCID,Buettel Jessie C.ORCID,Vaughan Peter M.ORCID,Fielding Matthew W.ORCID,Brook Barry W.ORCID

Abstract

AbstractConserving nomadic species is challenging due to the difficulty in monitoring their characteristically transient populations, and thereby detecting range-wide declines. An example is the Yellow-tailed Black-Cockatoo (YTBC; Zanda funerea), which disperses widely in search of food and is regularly—but sporadically—observed across eastern Australia. Under climate warming, a general southward shift in species distributions is expected in the southern hemisphere, with the extreme southern margins being truncated by an ocean barrier. Given these constraints, we ask whether sufficient refugia will exist for the YTBC in the future, by: (i) modelling habitat relationships within current geographic range of the YTBC based on weather, climate, vegetation, and land use, and (ii) using this framework, coupled with climate-model projections, to forecast 21st century impacts. Intensive land use and high variability in temperature and rainfall seem to most limit YTBC occurrence. In contrast, areas with a cooler, stable climate, and a network of old-growth forests, such as occurs in parts of south-eastern Australia and Tasmania, are most suitable for the species. As Australia becomes progressively hotter under climate change, the preferred bioclimatic envelope of the YTBC is forecast to contract poleward (as a general pattern) and to fragment within the existing range. However, despite an extensive loss of climatically suitable regions, the YTBC might find stable refugia at the southern margins of its geographic range, although continued loss of old-growth forests undermines their nesting potential. Therefore, beyond habitat conservation, creating nesting opportunities within plantation forests would likely be an effective conservation strategy to preserve habitat quality in climate refugia.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3