An autonomous tail-beating cycle period expressed by a region- specific swimming pattern generator in theCionalarva

Author:

Hara Takashi,Hasegawa Shuya,Iwatani YasushiORCID,Nishino Atsuo S.ORCID

Abstract

ABSTRACTSwimming locomotion in aquatic vertebrates, such as fish and tadpoles, is expressed through orchestrated operations of central pattern generators. These parallel neuronal circuits are ubiquitously distributed and mutually coupled along the spinal cord to express undulation patterns accommodated to efferent and afferent inputs. While such sets of schemes have been shown in vertebrates, the evolutionary origin of those mechanisms along the chordate phylogeny remains unclear. Ascidians, representing a sister group of vertebrates, give rise to tadpole larvae that freely swim in seawater. In this study, we tried to locate the swimming pattern generator in larvae of the ascidianCionaby examining locomotor ability of segmented body fragments. Our experiments demonstrated necessary and sufficient pattern generator activity in a short region (∼10% of the body length as the longest estimation) including the trunk-tail junction but excluding most of the trunk and tail with major sensory apparatuses therein. Moreover, we found that these “mid-piece” body fragments express periodic tail beating bursts with ∼20-s intervals without any exogenous stimuli. Comparisons among temporal patterns of tail beating bursts expressed by the mid-piece fragments and by whole larvae placed under different sensory conditions suggested that the presence of parts other than the critical mid-piece had effects to shorten swimming burst intervals, especially in the dark, and also to expand the variance in burst durations. We propose thatCionalarvae perform swimming as modified representations of autonomous and periodic pattern generator drives, which operate locally in the region of the trunk-tail junction.Summary statementMid-piece fragments of tadpole larvae of the ascidianCiona, lacking most of the anterior trunk and posterior tail, autonomously and periodically express tail beating bursts.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3