Image-based deep learning reveals the responses of human motor neurons to stress and ALS

Author:

Verzat ColombineORCID,Harley Jasmine,Patani RickieORCID,Luisier RaphaëlleORCID

Abstract

SUMMARYAlthough morphological attributes of cells and their substructures are recognized readouts of physiological or pathophysiological states, these have been relatively understudied in amyotrophic lateral sclerosis (ALS) research. In this study we integrate multichannel fluorescence high-content microscopy data with deep-learning imaging methods to reveal - directly from unsegmented images - novel neurite-associated morphological perturbations associated with (ALS-causing) VCP-mutant human motor neurons (MNs). Surprisingly, we reveal that previously unrecognized disease-relevant information is withheld in broadly used and often considered ‘generic’ biological markers of nuclei (DAPI) and neurons (βIII-tubulin). Additionally, we identify changes within the information content of ALS-related RNA binding protein (RBP) immunofluorescence imaging that is captured in VCP-mutant MN cultures. Furthermore, by analyzing MN cultures exposed to different extrinsic stressors, we show that heat stress recapitulates key aspects of ALS. Our study therefore reveals disease-relevant information contained in a range of both generic and more specific fluorescent markers, and establishes the use of image-based deep learning methods for rapid, automated and unbiased testing of biological hypotheses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3