Abstract
ABSTRACTGene conversion is GC-biased across a wide range of taxa. Large palindromes on mammalian sex chromosomes undergo frequent gene conversion that maintains arm-to-arm sequence identity greater than 99%, which may increase their susceptibility to the effects of GC-biased gene conversion. Here, we demonstrate a striking history of GC-biased gene conversion in 12 palindromes conserved on the X chromosomes of human, chimpanzee, and rhesus macaque. Primate X-chromosome palindrome arms have significantly higher GC content than flanking single-copy sequences. Nucleotide replacements that occurred in human and chimpanzee palindrome arms over the past 7 million years are one-and-a-half times as GC-rich than the ancestral bases they replaced. Using simulations, we show that our observed pattern of nucleotide replacements is consistent with GC-biased gene conversion with a magnitude of 70%, similar to previously reported values based on analyses of human meioses. However, GC-biased gene conversion explains only a fraction of the observed difference in GC content between palindrome arms and flanking sequence, suggesting that additional factors are required to explain elevated GC content in palindrome arms. This work supports a greater than 2:1 preference for GC bases over AT bases during gene conversion, and demonstrates that the evolution and composition of mammalian sex chromosome palindromes is strongly influenced by GC-biased gene conversion.
Publisher
Cold Spring Harbor Laboratory