Quantifying GC-Biased Gene Conversion in Great Ape Genomes Using Polymorphism-Aware Models

Author:

Borges Rui1,Szöllősi Gergely J2,Kosiol Carolin13

Affiliation:

1. Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Wien, Austria

2. Department of Biological Physics, MTA-ELTE “Lendulet” Evolutionary Genomics Research Group, Eötvös University, Pázmány P. stny. 1A, Budapest 1117, Hungary

3. Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, UK

Abstract

Abstract As multi-individual population-scale data become available, more complex modeling strategies are needed to quantify genome-wide patterns of nucleotide usage and associated mechanisms of evolution. Recently, the multivariate neutral Moran model was proposed. However, it was shown insufficient to explain the distribution of alleles in great apes. Here, we propose a new model that includes allelic selection. Our theoretical results constitute the basis of a new Bayesian framework to estimate mutation rates and selection coefficients from population data. We apply the new framework to a great ape dataset, where we found patterns of allelic selection that match those of genome-wide GC-biased gene conversion (gBGC). In particular, we show that great apes have patterns of allelic selection that vary in intensity—a feature that we correlated with great apes’ distinct demographies. We also demonstrate that the AT/GC toggling effect decreases the probability of a substitution, promoting more polymorphisms in the base composition of great ape genomes. We further assess the impact of GC-bias in molecular analysis, and find that mutation rates and genetic distances are estimated under bias when gBGC is not properly accounted for. Our results contribute to the discussion on the tempo and mode of gBGC evolution, while stressing the need for gBGC-aware models in population genetics and phylogenetics.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3