Analyzing the multidimensionality of biological aging with the tools of deep learning across diverse image-based and physiological indicators yields robust age predictors

Author:

Le Goallec AlanORCID,Collin Sasha,Diai Samuel,Prost Jean-Baptiste,Jabri M’Hamed,Vincent Théo,Patel Chirag J.ORCID

Abstract

AbstractIt is hypothesized that there are inter-individual differences in biological aging; however, differences in aging among (heart images vs. electrophysiology) and across (e.g., brain vs heart) physiological dimensions have not been systematically evaluated and compared. We analyzed 676,787 samples from 502,211 UK Biobank participants aged 37-82 years with deep learning approaches to build a total of 331 chronological age predictors on different data modalities such as videos (e.g. heart magnetic resonance imaging [MRI]), images (e.g. brain, liver and pancreas MRIs), time-series (e.g. electrocardiograms [ECGs], wrist accelerometer data) and scalar data (e.g. blood biomarkers) to characterize the multiple dimensions of aging. We combined these age predictors into 11 main aging dimensions, 31 subdimensions and 84 sub-subdimensions ensemble models based on specific organ systems. Heart dimension features predict chronological age with a testing root mean squared error (RMSE) and standard error of 2.83±0.04 years and musculoskeletal dimension features predict age with a RMSE of 2.65±0.04 years. We defined “accelerated” agers as participants whose predicted age was greater than their chronological age and computed the correlation between these different definitions of accelerated aging. We found that most aging dimensions are modestly correlated (average correlation=.139±.090) but that dimensions that are biologically related tend to be more positively correlated. For example, we found that heart anatomical (from MRI) accelerated aging and heart electrical (from ECG) accelerated aging are correlated (average Pearson of .249±.005). Overall, most dimensions of aging are complex traits with both genetic and non-genetic correlates. We identified 9,697 SNPs in 3,318 genes associated with accelerated aging and found an average GWAS-based heritability for accelerated aging of 26.1±7.42% (e.g. heart aging: 35.2±1.6%). We used GWAS summary statistics to estimate genetic correlation between aging dimensions and we found that most aging dimensions are genetically not correlated (average correlation=.104±.149). However, on the other hand, specific dimensions were genetically correlated, such as heart anatomical and electrical accelerated aging (Pearson rho .508±.089 correlated [r_g]). Finally, we identified biomarkers, clinical phenotypes, diseases, family history, environmental variables and socioeconomic variables associated with accelerated aging in each aging dimension and computed the correlation between the different aging dimensions in terms of these associations. We found that environmental and socioeconomic variables are similarly associated with accelerated aging across aging dimensions (average correlations of respectively .639±.180 and .607±.309). Dimensions are weakly correlated with each other, highlighting the multidimensionality of the aging process. Our results can be interactively explored on the following website: https://www.multidimensionality-of-aging.net/

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3