Comparing the genetic and environmental architecture of blood count, blood biochemistry and urine biochemistry biological ages with machine learning

Author:

Le Goallec AlanORCID,Diai Samuel,Vincent ThéoORCID,Patel Chirag J.ORCID

Abstract

AbstractWhile a large number of biological age predictors have been built from blood samples, a blood count-based biological age predictor is lacking, and the genetic and environmental factors associated with blood-measured accelerated aging remain elusive. In the following, we leveraged 31 blood count biomarkers measured from 489,079 blood samples, 28 blood biochemistry biomarkers measured from 245,147 blood samples, and four urine biochemistry biomarkers measured from 158,381 samples to build three distinct biological age predictors by training machine learning models to predict age. Blood biochemistry significantly outperformed blood count and urine biochemistry in terms of age prediction (RMSE: 5.92+-0.02 vs. 7.60+-0.02 years and 7.72+-0.04 years). We performed genome wide association studies [GWASs], and found accelerated blood biochemistry, blood count and urine biochemistry aging to be respectively 26.2+-0.3%, 18.1+-0.2% and 10.5±0.5% GWAS-heritable. We identified 1,081 single nucleotide polymorphisms [SNPs] associated with accelerated blood biochemistry aging, 2,636 SNPs associated with accelerated blood cells aging and 24 SNPs associated with accelerated urine biochemistry aging. Similarly, we identified biomarkers, clinical phenotypes, diseases, environmental and socioeconomic factors associated with accelerated blood biochemistry, blood cells and urine biochemistry aging.

Publisher

Cold Spring Harbor Laboratory

Reference117 articles.

1. Changing Demographics

2. Geroscience: Linking Aging to Chronic Disease

3. Johnson, N. B. , Hayes, L. D. , Brown, K. , Hoo, E. C. & Ethier, K. A. CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors—United States, 2005--2013. (2014).

4. Biological Age Predictors;EBioMedicine,2017

5. Zhavoronkov, A. , Li, R. , Ma, C. & Mamoshina, P . Deep biomarkers of aging and longevity: from research to applications. Aging 11, (2019).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3