Abstract
AbstractRecent breakthroughs in gene-editing technologies that can render individuals fully resistant to infections may offer unprecedented opportunities for controlling future epidemics. Yet, their potential for reducing disease spread are poorly understood as the necessary theoretical framework for estimating epidemiological effects arising from gene editing applications is currently lacking. Here, we develop semi-stochastic modelling approaches to investigate how the adoption of gene editing may affect infectious disease prevalence in farmed animal populations and the prospects and time-scale for disease elimination. We apply our models to the Porcine Reproductive and Respiratory Syndrome PRRS, one of the most persistent global livestock diseases to date. Whereas extensive control efforts have shown limited success, recent production of gene-edited pigs that are fully resistant to the PRRS virus have raised expectations for eliminating this deadly disease.Our models predict that disease elimination on a national scale would be difficult to achieve if gene editing was used as the only disease control. However, when complemented with vaccination, the introduction of 10% of genetically resistant animals in a fraction of herds could be sufficient for eliminating the disease within 3-6 years. Besides strategic distribution of genetically resistant animals, several other key determinants underpinning the epidemiological impact of gene-editing were identified.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献