Soft tissue deformations explain most of the mechanical work variations of human walking

Author:

van der Zee Tim J.ORCID,Kuo Arthur D.ORCID

Abstract

AbstractHumans perform mechanical work during walking, some by leg joints actuated by muscles, and some by passive, dissipative soft tissues. Dissipative losses must be restored by active muscle work, potentially in amounts sufficient to cost substantial metabolic energy. The most dissipative, and therefore costly, walking conditions might be predictable from the pendulum-like dynamics of the legs. If pendulum behavior is systematic, it may also predict the work distribution between active joints and passive soft tissues. We therefore tested whether the overall negative work of walking, and the fraction due to soft tissue dissipation, are both predictable by a pendulum model across a wide range of conditions. The model predicts whole-body negative work from the leading leg’s impact with ground (termed the Collision), to increase with the squared product of walking speed and step length. We experimentally tested this in humans (N = 9) walking in 26 different combinations of speed (0.7 – 2.0 m·s-1) and step length (0.5 – 1.1 m), with recorded motions and ground reaction forces. Whole-body negative Collision work increased as predicted (R2= 0.73), with a consistent fraction of about 63% (R2= 0.88) due to soft tissues. Soft tissue dissipation consistently accounted for about 56% of the variation in total whole-body negative work. During typical walking, active work to restore dissipative losses could account for 31% of the net metabolic cost. Soft tissue dissipation, not included in most biomechanical studies, explains most of the variation in negative work of walking, and could account for a substantial fraction of the metabolic cost.Summary statementSoft tissue deformations dissipate substantial energy during human walking, as predicted by a simple walking model.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3