A novel non-catalytic scaffolding activity of Hexokinase 2 contributes to EMT and metastasis

Author:

Blaha Catherine,Ramakrishnan Gopalakrishnan,Jeon Sang-Min,Nogueira Veronique,Rho Hyunsoo,Kang Soeun,Bhaskar Prashanth,Terry Alexander R.,Aissa Alexandre F.,Frolov Maxim V.,Patra Krushna C.,Brooks Robey R.,Hay Nissim

Abstract

AbstractHexokinase 2 (HK2), a glycolytic enzyme that catalyzes the first committed step in glucose metabolism, is markedly induced in cancer cells. HK2’s role in tumorigenesis has been attributed to its glucose kinase activity. However, we uncovered a novel kinase-independent HK2 activity, which promotes metastasis. We found that HK2 binds and sequesters glycogen kinase 3 (GSK3) and acts as a scaffold forming a ternary complex with the regulatory subunit of protein kinase A (PRKAR1a) and GSK3b to facilitate GSK3b phosphorylation by PKA, and to inhibit its activity. Thus, HK2 functions as an A-kinase anchoring protein (AKAP). GSK3b is known to phosphorylate proteins, which in turn are targeted for degradation. Consistently, HK2 increased the level and stability of the GSK3 targets, MCL1, NRF2, and SNAIL. In a mouse model of breast cancer metastasis, systemic HK2 deletion after tumor onset inhibited metastasis, which is determined by the effect of HK2 on GSK3b and SNAIL. We concluded that HK2 promotes SNAIL stability and breast cancer metastasis via two mechanisms: direct modulation of GSK3-activity and SNAIL- glycosylation that decreases susceptibility to phosphorylation by GSK3.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3