FEELnc: A tool for Long non-coding RNAs annotation and its application to the dog transcriptome

Author:

Wucher V,Legeai F,Hédan B,Rizk G,Lagoutte L,Leeb T,Jagannathan V,Cadieu E,David A,Lohi H,Cirera S,Fredholm M,Botherel N,Leegwater P,Le Béguec C,Fieten H,Johansson C,Johnsson J,Alifoldi J,André C,Lindblad-Toh K,Hitte C,Derrien T,

Abstract

ABSTRACTWhole transcriptome sequencing (RNA-seq) has become a standard for cataloguing and monitoring RNA populations. Among the plethora of reconstructed transcripts, one of the main bottlenecks consists in correctly identifying the different classes of RNAs, particularly those that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program which accurately annotates lncRNAs based on a Random Forest model trained with general features such as multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five state-of-art tools shows that FEELnc achieves similar or better classification performance on GENCODE and NONCODE datasets. The program also provides several specific modules that enable to fine-tune classification accuracy, to formalize the annotation of lncRNA classes and to annotate lncRNAs even in the absence of training set of noncoding RNAs. We used FEELnc on a real dataset comprising 20 new canine RNA-seq samples produced in the frame of the European LUPA consortium to expand the canine genome annotation and classified 10,374 novel lncRNAs and 58,640 new mRNA transcripts. FEELnc represents a standardized protocol for identifying and annotating lncRNAs and is freely accessible at https://github.com/tderrien/FEELnc.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3