Abstract
AbstractMany microbial functions happen within communities of interacting species. Explaining how species with intrinsically disparate fitness can coexist is important for applications such as manipulating host-associated microbiota or engineering industrial communities. Previous coexistence studies have often neglected interaction mechanisms. Here, we formulate and experimentally constrain a model in which chemical mediators of microbial interactions (e.g. metabolites or waste-products) are explicitly incorporated. We construct many instances of coexistence by simulating community assembly through enrichment and ask how species interactions can explain coexistence. We show that growth-facilitating influences between members are favored in assembled communities. Among negative influences, self-restraint, such as production of self-inhibiting waste, contributes to coexistence, whereas inhibition of other species disrupts coexistence. Coexistence is also favored when interactions are mediated by depletable chemicals that get consumed or degraded, rather than by reusable chemicals that are unaffected by recipients. Our model creates null predictions for coexistence driven by chemical-mediated interactions.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献