Abstract
AbstractAdvances in biosensor engineering have enabled the design of programmable molecular systems to detect a range of pathogens, nucleic acids, and chemicals. Here, we engineer and field-test a biosensor for fluoride, a major groundwater contaminant of global concern. The sensor consists of a cell-free system containing a DNA template that encodes a fluoride-responsive riboswitch regulating genes that produce a fluorescent or colorimetric output. Individual reactions can be lyophilized for long-term storage and detect fluoride at levels above 2 parts per million, the EPA’s most stringent regulatory standard, in both laboratory and field conditions. Through onsite detection of fluoride in a real-world water source, this work provides a critical proof-of-principle for the future engineering of riboswitches and other biosensors to address challenges for global health and the environment.
Publisher
Cold Spring Harbor Laboratory
Reference35 articles.
1. World Health Organization, World health statistics 2016: monitoring health for the SDGs sustainable development goals (World Health Organization, 2016).
2. Global access to safe water: accounting for water quality and the resulting impact on MDG progress;International journal of environmental research and public health,2012
3. Fluoride in drinking water and its removal
4. Paper-Based Synthetic Gene Networks
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献