Abstract
AbstractCell-free biosensors are promising tools for medical diagnostics, yet their performance can be affected by matrix effects arising from the sample itself or from external components. Here we systematically evaluate the performance and robustness of cell-free systems in serum, plasma, urine, and saliva using two reporter systems, sGFP and luciferase. In all cases, clinical samples have a strong inhibitory effect. Of different inhibitors, only the RNase inhibitor mitigated matrix effects. However, we found that the recovery potential of RNase inhibitor was partially muted by interference from glycerol contained in the commercial buffer. We solved this issue by designing a strain producing an RNase inhibitor protein requiring no additional step in extract preparation. Furthermore, our new extract yielded higher reporter levels than previous conditions and tempered interpatient variability associated with matrix effects. This systematic evaluation and improvements of cell-free system robustness unified across many types of clinical samples is a significant step towards developing cell-free diagnostics for a wide range of conditions.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献