Global protein responses of multi-drug resistant plasmid containing Escherichia coli to ampicillin, cefotaxime, imipenem and ciprofloxacin

Author:

Margalit Anatte,Carolan James C.,Walsh FionaORCID

Abstract

AbstractAntimicrobial resistance (AMR) and multi-drug resistance (MDR) in pathogenic bacteria are frequently mediated by plasmids. However, plasmids do not exist in isolation but rather require the bacterial host interaction in order to produce the AMR phenotype. This study aimed to utilise mass spectrometry-based proteomics to reveal the plasmid and chromosomally derived protein profile of Escherichia coli under antimicrobial stress. This was achieved by comparing the proteomes of E. coli containing the MDR pEK499 plasmid, under ampicillin, cefotaxime, imipenem or ciprofloxacin stress with the proteomes of these bacteria grown in the absence of antimicrobial. Our analysis identified statistically significant differentially abundant proteins common to groups exposed to the β-lactam antimicrobials but not ciprofloxacin, indicating a β-lactam stress response to exposure from this class of drugs, irrespective of β-lactam resistance or susceptibility. These include ecotin and free methionine-R-sulfoxide reductase. These data also identified distinct differences in the cellular response to each β-lactam. Data arising from comparisons of the proteomes of ciprofloxacin-treated E. coli and controls detected an increase in the relative abundance of proteins associated with ribosomes, translation, the TCA-cycle and several proteins associated with detoxification and a decrease in the relative abundances of proteins associated with stress response, including oxidative stress. We identified changes in proteins associated with persister formation in the presence of ciprofloxacin but not the β-lactams. The plasmid proteome differed across each treatment and did not follow the pattern of antimicrobial – AMR protein associations. For example, a relative increase in the amount of blaCTX-M-15 in the presence of cefotaxime and ciprofloxacin but not the other β-lactams, suggesting regulation of the blaCTX-M-15 protein production. The proteomic data from the this study provided novel insights into the proteins produced from the chromosome and plasmid under different antimicrobial stresses. These data also identified novel proteins not previously associated with AMR or antimicrobials responses in pathogens, which may well represent potential targets of AMR inhibition.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3