Abstract
AbstractWe characterized the global transcriptome of Escherichia coli MG1655:: tetA grown in the presence of ½ MIC (14 mg/L) of OTC, and for comparison WT MG1655 strain grown with 1//2 MIC of OTC (0.25 mg/L OTC). 1646 genes changed expression significantly (FDR > 0.05) in the resistant strain, the majority of which (1246) were also regulated in WT strain. Genes involved in purine synthesis and ribosome structure and function were top-enriched among up-regulated genes, and anaerobic respiration, nitrate metabolism and aromatic amino acid biosynthesis genes among down-regulated genes. Blocking of the purine-synthesis- did not affect resistance phenotypes (MIC and growth rate with OTC), while blocking of protein synthesis using low concentrations of chloramphenicol or gentamicin, lowered MIC towards OTC. Metabolic-modeling, using a novel model for MG1655 and continuous weighing factor that reflected the degree of up or down regulation of genes encoding a reaction, identified 102 metabolic reactions with significant change in flux in MG1655:: tetA when grown in the presence of OTC compared to growth without OTC. These pathways could not have been predicted by simply analyzing functions of the up and down regulated genes, and thus this work has provided a novel method for identification of reactions which are essential in the adaptation to growth in the presence of antimicrobials.
Publisher
Springer Science and Business Media LLC
Reference70 articles.
1. Roberts, M. C. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19, 1–24 (1996).
2. Coenen, S. et al. European surveillance of antimicrobial consumption (ESAC): outpatient use of tetracyclines, sulphonamides and trimethoprim, and other antibacterials in Europe (1997–2009). JAC 66, vi57–vi70 (2011).
3. Chopra, I. & Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232–260 (2001).
4. Sengelov, G., Halling-Sorensen, B. & Aarestrup, F. M. Susceptibility of Escherichia coli and Enterococcus faecium isolated from pigs and broiler chickens to tetracycline degradation products and distribution of tetracycline resistance determinants in E. coli from food animals. Vet. Microbiol. 95, 91–101 (2003).
5. Tadesse, D. A. et al. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg. Infec. Dis. 18, 741–749 (2012).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献