Determination of the Two-Component Systems regulatory network reveals core and accessory regulations across Pseudomonas aeruginosa lineages

Author:

Trouillon JulianORCID,Imbert Lionel,Villard Anne-Marie,Vernet Thierry,Attrée InaORCID,Elsen SylvieORCID

Abstract

SUMMARYPseudomonas aeruginosa possesses one of the most complex bacterial regulatory networks, which largely contributes to its success as a human opportunistic pathogen. However, most of its transcription factors (TFs) are still uncharacterized and the potential intra-species variability in regulatory networks has been mostly ignored so far. Here, to provide a first global view of the two-component systems (TCSs) regulatory network in P. aeruginosa, we produced and purified all DNA-binding TCS response regulators (RRs) and used DAP-seq to map the genome-wide binding sites of these 55 TFs across the three major P. aeruginosa lineages. The resulting networks encompass about 40% of all genes in each strain and contain numerous new important regulatory interactions across most major physiological processes, including virulence and antibiotic resistance. Strikingly, the comparison between the three representative strains shows that about half of the detected targets are specific to only one or two of the tested strains, revealing a previously unknown large functional diversity of TFs within a single species. Three main mechanisms were found to drive this diversity, including differences in accessory genome content, as exemplified by the strain-specific plasmid in the IHMA87 outlier strain which harbors numerous binding sites of chromosomally-encoded RRs. Additionally, most RRs display potential auto-regulation or RR-RR cross-regulation, bringing to light the vast complexity of this network. Overall, we provide the first complete delineation of the TCS regulatory network in P. aeruginosa that will represent an important resource for future studies on this pathogen.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3