Feeding effects on liver mitochondrial bioenergetics of Boa constrictor (Serpentes: Boidae)

Author:

da Mota Araujo Helena RachelORCID,Sartori Marina RinconORCID,Navarro Claudia D. C.,de Carvalho José EduardoORCID,da Cruz André LuisORCID

Abstract

ABSTRACTSnakes are interesting examples of overcoming energy metabolism challenges as many species can endure long periods without feeding, and their eventual meals are of reasonably large sizes, thus exhibiting dual extreme adaptations. Consequently, metabolic rate increases considerably to attend to the energetic demand of digestion, absorption and, protein synthesis. These animals should be adapted to transition from these two opposite states of energy fairly quickly, and therefore we investigated mitochondrial function plasticity in these states. Herein we compared liver mitochondrial bioenergetics of the boid snake Boa constrictor during fasting and after meal intake. We fasted the snakes for 60 days, then we fed a subgroup with 30% of their body size and evaluated their maximum postprandial response. We measured liver respiration rates from permeabilized tissue and isolated mitochondria, and from isolated mitochondria, we also measured Ca2+ retention capacity, the release of H2O2, and NAD(P) redox state. Mitochondrial respiration rates were maximized after feeding, reaching until 60% increase from fasting levels when energized with complex I-linked substrates. Interestingly, fasting and fed snakes exhibited similar respiratory control ratios and citrate synthase activity. Furthermore, we found no differences in Ca2+ retention capacity, indicating no increase in susceptibility to mitochondrial permeability transition pore (PTP), or redox state of NAD(P), although fed animals exhibited increases in the release of H2O2. Thus, we conclude that liver mitochondria from B. constrictor snakes increase the maintenance costs during the postprandial period and quickly improve the mitochondrial bioenergetics capacity without compromising the redox balance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3