Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes

Author:

Brand M D1,Harper M E1,Taylor H C1

Affiliation:

1. Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.

Abstract

The control exerted by substrate oxidation reactions, by ATP turnover and by the proton leak over the oxygen consumption rate, the phosphorylation rate, the proton leak rate and the protonmotive force (delta p) in isolated rat liver mitochondria under a range of conditions between non-phosphorylating (State 4) and maximum phosphorylation (State 3) was investigated by using the top-down approach of metabolic control analysis. The experiments were carried out with saturating concentrations of the substrates succinate, glutamate with malate, or pyruvate with malate. The distribution of control was very similar with each of the three substrates. The effective P/O ratio (i.e. not corrected for leak reactions) was also measured; it varied from zero in State 4 to 80-90% of the maximum theoretical P/O ratio in State 3. Under most conditions control over the effective P/O ratio was shared between proton leak (which had negative control) and the phosphorylating subsystem (which had roughly equal positive control); near State 4, substrate oxidation reactions also acquired some control over this ratio. In resting hepatocytes the effective P/O ratio was only 50% of its maximum theoretical value, corresponding to an effective P/O ratio of only 1.3 for complete oxidation of glucose. The effective P/O ratio for intracellular mitochondrial oxygen consumption was 64% of the maximum value. The control coefficient of the mitochondrial proton leak over the effective P/O ratio in cells was -0.34; the control coefficient of phosphorylation reactions over this ratio was 0.31 and the control coefficient of substrate oxidation reactions over the ratio was 0.03, showing how the coupling efficiency in cells can respond sensitively to agents that change the proton leak or the ATP demand, but not to those that change substrate oxidation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3