Identification and characterization of hPSC-derived FOXA2+ progenitor cells with ventricular cardiac differentiation potential

Author:

Calderon Damelys,Wickramasinghe Nadeera,Sarrafha Leili,Schaniel Christoph,Chen Shuibing,Tomishima Mark,Dubois Nicole C.

Abstract

ABSTRACTWhile much progress has been made in understanding early cardiac development, the precise mechanisms that specify the different cardiomyocyte subtypes remain poorly understood. Recent data from our lab have shown that transient Foxa2 expression identifies a progenitor population with exclusive ventricular differentiation potential in the mouse heart. Here we have translated this concept to the human pluripotent stem cell (hPSC) system. Using a FOXA2-GFP reporter cell line we characterized expression of FOXA2 during hPSC cardiac differentiation and found that a subset of cardiac mesoderm precursors transiently expresses FOXA2. Gene expression analysis of FOXA2+ and FOXA2- cardiac mesoderm revealed that both populations similarly express early cardiac specification markers such as PDGFRA, TBX5, and ISL1, while other key candidates including TBX20 and GATA4 are significantly upregulated in the FOXA2+ population. Isolation and subsequent differentiation of FOXA2+ and FOXA2- populations demonstrates their comparable differentiation potential to both cardiomyocytes and epicardial cells. However, cardiomyocytes derived from FOXA2+ precursors showed enhanced differentiation efficiency toward ventricular cardiomyocytes compared to cardiomyocytes derived from FOXA2- precursors. To identify new mechanisms that regulate ventricular specification, we performed small molecule screening and found that inhibition of the EGFR pathway strongly increased the cardiac mesoderm population in general, and the FOXA2+ precursors in particular. Finally, we have identified a combination of cell surface markers to specifically isolate FOXA2+ cardiac precursors. In summary, our results suggest that FOXA2+ cardiac mesoderm harbors ventricular-specific differentiation potential and isolation of these cells permits the generation of cultures enriched for ventricular cardiomyocytes. Generating such enriched cardiac populations will be relevant for regenerative medicine approaches, as well as for disease modeling from induced pluripotent stem cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3