Self-assembly vascularized human cardiac organoids model cardiac diseases in petri dishes and in mice

Author:

Zhong Qixing,He Yao,Teng Li,Zhang Yinqian,Zhang Ting,Zhang Yinbing,Li Qinxi,Zhao Bangcheng,Chen Daojun,Zhong Zhihui

Abstract

AbstractIn this study, we generated self-assembly cardiac organoids (COs) from human pluripotent stem cells by dual-phase modulation of Wnt/β-catenin pathway, utilizing CHIR99021 and IWR-1-endo. The resulting COs exhibited a diverse array of cardiac-specific cell lineages, cardiac cavity-like structures and demonstrated the capacity of spontaneous beating and vascularizationin vitro. We further employed these complex and functional COs to replicate conditions akin to human myocardial infarction and SARS-CoV-2 induced fibrosis. These models accurately captured the pathological characteristics of these diseases, in bothin vitroandin vivosettings. In addition, we transplanted the COs into NOD SCID mice and observed that they survived and exhibited ongoing expansionin vivo.Impressively, over a span of 75-day transplantation, these COs not only established blood vessel-like structures but also integrated with the host mice’s vascular system. It is noteworthy that these COs developed to a size of approximately 8 mm in diameter, slightly surpassing the dimensions of the mouse heart. This innovative research highlighted the potential of our COs as a promising avenue for cardiovascular research and therapeutic exploration.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3