Abstract
ABSTRACTThe impacts of IFN signaling on COVID19 pathology are multiple, with protective and harmful effects being documented. We report here a multi-omics investigation of IFN signaling in hospitalized COVID19 patients, defining the biosignatures associated with varying levels of 12 different IFN ligands. Previously we showed that seroconversion associates with decreased production of select IFN ligands (Galbraith et al, 2021). We show now that the antiviral transcriptional response in circulating immune cells is strongly associated with a specific subset of ligands, most prominently IFNA2 and IFNG. In contrast, proteomics signatures indicative of endothelial damage associate with levels of IFNB and IFNA6. Differential IFN ligand production is linked to distinct constellations of circulating immune cells. Lastly, IFN ligands associate differentially with activation of the kynurenine pathway, dysregulated fatty acid metabolism, and altered central carbon metabolism. Altogether, these results reveal specialized IFN ligand action in COVID19, with potential diagnostic and therapeutic implications.IMPACT STATEMENTAnalysis of multi-omics signatures associated with 12 different IFN ligands reveals their specialized action in COVID19.
Publisher
Cold Spring Harbor Laboratory