Programmable Cleavage of Double-stranded DNA by Combined Action of Argonaute CbAgo from Clostridium butyricum and Nuclease Deficient RecBC Helicase from E.coli

Author:

Vaiskunaite RitaORCID,Vainauskas JogirdasORCID,Morris Janna,Potapov VladimirORCID,Bitinaite JurateORCID

Abstract

ABSTRACTProkaryotic Argonautes (pAgos) use small nucleic acids as specificity guides to cleave single-stranded DNA at complementary sequences. DNA targeting function of pAgos creates attractive opportunities for DNA manipulations that require programmable DNA cleavage. Discovery of mesophilic Argonautes active at physiological temperature places pAgos closer to their possible application for genome editing as a simpler alternative to CRISPR/Cas nucleases. Currently, the use of mesophilic pAgos as programmable DNA endonucleases is hampered by their poor action on double-stranded DNA (dsDNA), mainly due to their inability to invade the DNA duplex. The present study demonstrates that efficient in vitro cleavage of double-stranded DNA by mesophilic Argonaute CbAgo from Clostridium butyricum can be activated via the DNA strand unwinding activity of nuclease deficient mutant of RecBC DNA helicase from Escherichia coli (referred to as RecBexo-C). Properties of CbAgo and characteristics of simultaneous cleavage of complementary DNA strands in concurrence with DNA strand unwinding by RecBexo-C were thoroughly explored using 0.3-25 kb DNA substrates. When combined with RecBexo-C helicase, CbAgo was capable of cleaving target sequences located 11-12.5 kb from the ends of linear dsDNA at 37ºC. Our study demonstrates that CbAgo with RecBexo-C can be programmed to generate dsDNA fragments flanked with custom-designed single-stranded overhangs suitable for ligation with compatible DNA fragments. At present, the combination of CbAgo and RecBexo-C represents the most efficient mesophilic DNA-guided DNA-cleaving programmable endonuclease for use in diagnostic and synthetic biology methods that require sequence-specific nicking/cleavage of dsDNA at any desired location.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A bacterial Argonaute from Tepiditoga spiralis with the ability of RNA guided plasmid cleavage;Biochemical and Biophysical Research Communications;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3