Genome-Wide Association Meta-Analysis Using a Recessive Model Illuminates Genetic Architecture of Type 2 Diabetes

Author:

O’Connor Mark J.ORCID,Huerta-Chagoya Alicia,Cortés-Sánchez Paula,Bonàs-Guarch Silvía,Guindo-Martínez Marta,Cole Joanne B.,Torrents David,Veerapen Kumar,Grarup Niels,Kurki Mitja,Rundsten Carsten F.,Pedersen Oluf,Brandslund Ivan,Linneberg Allan,Hansen Torben,Leong Aaron,Florez Jose C.,Mercader Josep M.ORCID

Abstract

ABSTRACTObjectiveMost genome-wide association studies (GWAS) of complex traits are performed using models with additive allelic effects. Hundreds of loci associated with type 2 diabetes have been identified using this approach. Additive models, however, can miss loci with recessive effects, thereby leaving potentially important genes undiscovered.Research Design and MethodsWe conducted the largest GWAS meta-analysis using a recessive model for type 2 diabetes. Our discovery sample included 33,139 cases and 279,507 controls from seven European-ancestry cohorts including the UK Biobank. We then used two additional cohorts, FinnGen and a Danish cohort, for replication. For the most significant recessive signal, we conducted a phenome-wide association study across hundreds of traits to make inferences about the pathophysiology underlying the increased risk seen in homozygous carriers.ResultsWe identified 51 loci associated with type 2 diabetes, including five variants with recessive effects undetected by prior additive analyses. Two of the five had minor allele frequency less than 5% and were each associated with more than doubled risk. We replicated three of the variants, including one of the low-frequency variants, rs115018790, which had an odds ratio in homozygous carriers of 2.56 (95% CI 2.05-3.19, P=1×10−16) and a stronger effect in men than in women (interaction P=7×10−7). Colocalization analysis linked this signal to reduced expression of the nearby PELO gene, and the signal was associated with multiple diabetes-related traits, with homozygous carriers showing a 10% decrease in LDL and a 20% increase in triglycerides.ConclusionsOur results demonstrate that recessive models, when compared to GWAS using the additive approach, can identify novel loci, including large-effect variants with pathophysiological consequences relevant to type 2 diabetes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3