Abstract
Interpretations of values of the FST measure of genetic differentiation rely on an understanding of its mathematical constraints. Previously, it has been shown that FST values computed from a biallelic locus in a set of multiple populations and FST values computed from a multiallelic locus in a pair of populations are mathematically constrained as a function of the frequency of the allele that is most frequent across populations. We generalize from these cases to report here the mathematical constraint on FST given the frequency M of the most frequent allele at a multiallelic locus in a set of multiple populations. Using coalescent simulations of an island model of migration with an infinitely-many-alleles mutation model, we argue that the joint distribution of FST and M helps in disentangling the separate influences of mutation and migration on FST. Finally, we show that our results explain a puzzling pattern of microsatellite differentiation: the lower FST in an interspecific comparison between humans and chimpanzees than in the comparison of chimpanzee populations. We discuss the implications of our results for the use of FST.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献