Spatial and temporal localization of cell wall associated pili in Enterococcus faecalis

Author:

Choo Pei YiORCID,Wang Charles Y.,VanNieuwenhze Michael S.ORCID,Kline Kimberly A.ORCID

Abstract

AbstractEnterococcus faecalis relies upon a number of cell wall-associated proteins for virulence. One virulence factor is the sortase-assembled endocarditis and biofilm associated pilus (Ebp), an important factor for biofilm formation in vitro and in vivo. The current paradigm for sortase-assembled pilus biogenesis in Gram-positive bacteria is that the pilus sortase covalently links pilus monomers prior to recognition, while the housekeeping sortase cleaves at the LPXTG motif within the terminal pilin subunit, and subsequently attaches assembled pilus fiber to the growing cell wall at sites of new cell wall synthesis. While the cell wall anchoring mechanism and polymerization of Ebp is well characterized, less is known about the spatial and temporal deposition of this protein on the cell surface. We followed the distribution of Ebp and peptidoglycan (PG) throughout the E. faecalis cell cycle via immunofluorescence microscopy and fluorescent D-amino acids (FDAA) staining. Surprisingly, cell surface Ebp did not co-localize with newly synthesized PG. Instead, surface-anchored Ebp was localized to the cell hemisphere but never at the septum where new cell wall is deposited. In addition, the older hemisphere of the E. faecalis diplococcus were completely saturated with Ebp, while Ebp appeared as two foci directly adjacent to the nascent septum in the newer hemisphere. A similar localization pattern was observed for another cell wall anchored substrate by sortase A, aggregation substance (AS), suggesting that this may be a general rule for all SrtA substrates in E. faecalis. When cell wall synthesis was inhibited by ramoplanin, an antibiotic that binds and sequesters lipid II cell wall precursors, new Ebp deposition at the cell surface was not disrupted. These data suggest an alternative paradigm for sortase substrate deposition in E. faecalis, in which Ebp are anchored directly onto un-crosslinked cell wall, independent of new PG synthesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3