The Lysozyme-Induced Peptidoglycan N -Acetylglucosamine Deacetylase PgdA (EF1843) Is Required for Enterococcus faecalis Virulence

Author:

Benachour Abdellah1,Ladjouzi Rabia1,Le Jeune André1,Hébert Laurent1,Thorpe Simon2,Courtin Pascal34,Chapot-Chartier Marie-Pierre34,Prajsnar Tomasz K.56,Foster Simon J.56,Mesnage Stéphane56

Affiliation:

1. Université de Caen Basse-Normandie, EA 4655 U2RM, Caen, France

2. Department of Chemistry, University of Sheffield, Brookhill, Sheffield, United Kingdom

3. INRA, UMR1319 Micalis, Jouy-en-Josas, France

4. AgroParisTech, UMR Micalis, Jouy-en-Josas, France

5. Krebs Institute, University of Sheffield, Western Bank, Sheffield, United Kingdom

6. Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom

Abstract

ABSTRACT Lysozyme is a key component of the innate immune response in humans that provides a first line of defense against microbes. The bactericidal effect of lysozyme relies both on the cell wall lytic activity of this enzyme and on a cationic antimicrobial peptide activity that leads to membrane permeabilization. Among Gram-positive bacteria, the opportunistic pathogen Enterococcus faecalis has been shown to be extremely resistant to lysozyme. This unusual resistance is explained partly by peptidoglycan O -acetylation, which inhibits the enzymatic activity of lysozyme, and partly by d -alanylation of teichoic acids, which is likely to inhibit binding of lysozyme to the bacterial cell wall. Surprisingly, combined mutations abolishing both peptidoglycan O -acetylation and teichoic acid alanylation are not sufficient to confer lysozyme susceptibility. In this work, we identify another mechanism involved in E. faecalis lysozyme resistance. We show that exposure to lysozyme triggers the expression of EF1843, a protein that is not detected under normal growth conditions. Analysis of peptidoglycan structure from strains with EF1843 loss- and gain-of-function mutations, together with in vitro assays using recombinant protein, showed that EF1843 is a peptidoglycan N -acetylglucosamine deacetylase. EF1843-mediated peptidoglycan deacetylation was shown to contribute to lysozyme resistance by inhibiting both lysozyme enzymatic activity and, to a lesser extent, lysozyme cationic antimicrobial activity. Finally, EF1843 mutation was shown to reduce the ability of E. faecalis to cause lethality in the Galleria mellonella infection model. Taken together, our results reveal that peptidoglycan deacetylation is a component of the arsenal that enables E. faecalis to thrive inside mammalian hosts, as both a commensal and a pathogen.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3