Self-organized morphogenesis of a human neural tube in vitro by geometric constraints

Author:

Karzbrun EyalORCID,Khankhel Aimal H.,Megale Heitor C.,Glasauer Stella M. K.,Wyle Yofiel,Britton George,Warmflash AryehORCID,Kosik Kenneth S.,Siggia Eric D.,Shraiman Boris I.,Streichan Sebastian J.ORCID

Abstract

Understanding how human embryos develop their shape is a fundamental question in physics of life with strong medical implications. However, it is challenging to study the dynamics of organ formation in humans. Animals differ from humans in key aspects, and in particular in the development of the nervous system. Conventional organoids are quantitatively unreproducible and exhibit highly variable morphology. Here we present a morphologically reproducible and scalable approach for studying human organogenesis in a dish, which is compatible with live imaging. We achieve this by precisely controlling cell fate pattern formation in 2D stem cell sheets, while allowing for self-organization of tissue shape in 3D. Upon triggering neural pattern formation, the initially flat stem cell sheet undergoes folding morphogenesis and self-organizes into a millimeter long anatomically accurate model of the neural tube, covered by epidermis. We find that neural and epidermal human tissues are necessary and sufficient for folding morphogenesis in the absence of mesoderm activity. Furthermore, we find that molecular inhibition of tissue contractility leads to defects similar to neural tube closure defects, consistent with in vivo studies. Finally, we discover that neural tube shape, including the number and location of hinge points, depends on neural tissue size. This suggests that neural tube morphology along the anterior posterior axis depends on neural plate geometry in addition to molecular gradients. Our approach provides a new path to study human organ morphogenesis in health and disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3