Cross-species blastocyst chimerism between nonhuman primates using iPSCs

Author:

Roodgar Morteza,Suchy Fabian P.,Bajpai Vivek,Viches-Moure Jose G.,Bhadury Joydeep,Oikonomopoulos Angelos,Wu Joseph C.,Mankowski Joseph L.,Loh Kyle M.,Nakauchi Hiromitsu,VandeVoort Catherine A.,Snyder Michael P.

Abstract

SummaryThrough the production of chimeric animals, induced pluripotent stem cells (iPSCs) can generate personalized organs with diverse applications for both basic research and translational medicine. This concept was first validated in rodents by forming a rat pancreas in mice and vice versa. However, the potential use of human iPSCs to generate xenogenic organs in other species is technically and ethically difficult. Recognizing these concerns, we explored the generation of chimeric nonhuman primates (NHP) embryos, by injecting either chimpanzee or pig-tailed macaque iPSCs into rhesus macaque embryos. We first derived iPSCs from chimpanzees and pig-tailed macaques. We found that the chimpanzee iPSCs mixed well with human iPSCs duringin vitroco-culture and differentiation. The differentiation of mixed human and chimpanzee iPSCs formed functioning cardiomyocyte layers in vitro, whereas human or chimpanzee iPSC mixed with pig-tailed macaque or mouse cells do not; these results indicate that chimpanzee and human cells are closely related in function. Considering the ethical aspects of injecting human iPSCs into nonhuman primate blastocysts, we tested whether chimpanzee iPSCs injected into 99 macaque 5-day-old embryos formed cross-species chimeras two days after injection. Strikingly, the chimpanzee iPSCs survived, proliferated and integrated near the inner cell mass (ICM) of rhesus macaque embryos. These findings highlight the broad potential of primate iPSCs in forming cross-species chimeras beyond rodents and provides a foundational basis for organ generation using human iPSCs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3