Global ribosome profiling reveals that mutant huntingtin stalls ribosomes and represses protein synthesis independent of fragile X mental retardation protein

Author:

Eshraghi Mehdi,Karunadharma Pabalu,Blin Juliana,Shahani Neelam,Ricci Emiliano,Michel Audrey,Urban Nicolai,Galli Nicole,Rao Sumitha Rajendra,Sharma Manish,Florescu Katie,Subramaniam Srinivasa

Abstract

AbstractThe regulators that stall ribosome translocation are poorly understood. We find that polyglutamine-expanded mutant Huntingtin (mHtt), the Huntington’s disease (HD) causing protein, promotes ribosome stalling and physiologically suppresses protein synthesis. A comprehensive, genome-wide analysis of ribosome footprint profiling (Ribo-Seq) revealed widespread ribosome stalling on mRNA transcripts and a shift in the distribution of ribosomes toward the 5’ end, with single-codon unique pauses on selected mRNAs in HD cells. In Ribo-Seq, we found fragile X mental retardation protein (FMRP), a known regulator of ribosome stalling, translationally upregulated and it co-immunoprecipitated with mHtt in HD cells and postmortem brain. Depletion of FMRP gene, Fmr1, however, did not affect the mHtt-mediated suppression of protein synthesis or ribosome stalling in HD cells. Consistent with this, heterozygous deletion of Fmr1 in Q175FDN-Het mouse model, Q175FDN-Het; Fmr1+/–, showed no discernable phenotype, but a subtle deficit in motor skill learning. On the other hand, depletion of mHtt, which binds directly to ribosomes in an RNase-sensitive manner, enhanced global protein synthesis, increased ribosome translocation and decreased stalling. This mechanistic knowledge advances our understanding of the inhibitory role of mHtt in ribosome translocation and may lead to novel target(s) identification and therapeutic approaches that modulate ribosome stalling in HD.One Sentence SummaryHuntington’s disease (HD) protein, mHtt, binds to ribosomes and affects their translocation and promotes stalling independent of the fragile X mental retardation protein.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3