A Chromatin Accessibility Atlas of the Developing Human Telencephalon

Author:

Markenscoff-Papadimitriou Eirene,Whalen SeanORCID,Przytycki Pawel,Thomas Reuben,Binyameen Fadya,Nowakowski Tomasz J.,Sanders Stephan J.ORCID,State Matthew W.,Pollard Katherine S.,Rubenstein John L.

Abstract

AbstractGene expression differs between cell types and regions within complex tissues such as the developing brain. To discover regulatory elements underlying this specificity, we generated genome-wide maps of chromatin accessibility in eleven anatomically-defined regions of the developing human telencephalon, including upper and deep layers of the prefrontal cortex. We predicted a subset of open chromatin regions (18%) that are most likely to be active enhancers, many of which are dynamic with 26% differing between early and late mid-gestation and 28% present in only one brain region. These region-specific predicted regulatory elements (pREs) are enriched proximal to genes with expression differences across regions and developmental stages and harbor distinct sequence motifs that suggest potential upstream regulators of regional and temporal transcription. We leverage this atlas to identify regulators of genes associated with autism spectrum disorder (ASD) including an enhancer of BCL11A, validated in mouse, and two functional de novo mutations in individuals with ASD in an enhancer of SLC6A1, validated in neuroblastoma cells. These applications demonstrate the utility of this atlas for decoding neurodevelopmental gene regulation in health and disease.SummaryTo discover regulatory elements driving the specificity of gene expression in different cell types and regions of the developing human brain, we generated an atlas of open chromatin from eleven dissected regions of the mid-gestation human telencephalon, including upper and deep layers of the prefrontal cortex. We identified a subset of open chromatin regions (OCRs), termed predicted regulatory elements (pREs), that are likely to function as developmental brain enhancers. pREs showed regional differences in chromatin accessibility, including many specific to one brain region, and were correlated with gene expression differences across the same regions and gestational ages. pREs allowed us to map neurodevelopmental disorder risk genes to developing telencephalic regions, and we identified three functional de novo noncoding variants in pREs that alter enhancer function. In addition, transgenic experiments in mouse validated enhancer activity for a pRE proximal to BCL11A, showing how this atlas serves as a resource for decoding neurodevelopmental gene regulation in health and disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3