Networks of genomic co-occurrence capture characteristics of human influenza A (H3N2) evolution

Author:

Du Xiangjun,Wang Zhuo,Wu Aiping,Song Lin,Cao Yang,Hang Haiying,Jiang Taijiao

Abstract

The recent availability of full genomic sequence data for a large number of human influenza A (H3N2) virus isolates over many years provides us an opportunity to analyze human influenza virus evolution by considering all gene segments simultaneously. However, such analysis requires development of new computational models that can capture the complex evolutionary features over the entire genome. By analyzing nucleotide co-occurrence over the entire genome of human H3N2 viruses, we have developed a network model to describe H3N2 virus evolutionary patterns and dynamics. The network model effectively captures the evolutionary antigenic features of H3N2 virus at the whole-genome level and accurately describes the complex evolutionary patterns between individual gene segments. Our analyses show that the co-occurring nucleotide modules apparently underpin the dynamics of human H3N2 evolution and that amino acid substitutions corresponding to nucleotide co-changes cluster preferentially in known antigenic regions of the viral HA. Therefore, our study demonstrates that nucleotide co-occurrence networks represent a powerful method for tracking influenza A virus evolution and that cooperative genomic interaction is a major force underlying influenza virus evolution.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3