Fine-scale characterization of genomic structural variation in the human genome reveals adaptive and biomedically relevant hotspots

Author:

Lin Yen-Lung,Gokcumen Omer

Abstract

AbstractGenomic structural variants (SVs) are distributed nonrandomly across the human genome. These “hotspots” have been implicated in critical evolutionary innovations, as well as serious medical conditions. However, the evolutionary and biomedical features of these hotspots remain incompletely understood. In this study, we analyzed data from 2,504 genomes from the 1000 Genomes Project Consortium and constructed a refined map of 1,148 SV hotspots in human genomes. By studying the genomic architecture of these hotspots, we found that both nonallelic homologous recombination and non-homologous mechanisms act as mechanistic drivers of SV formation. We found that the majority of SV hotspots are within gene-poor regions and evolve under relaxed negative selection or neutrality. However, we found that a small subset of SV hotspots harbor genes that are enriched for anthropologically crucial functions, including blood oxygen transport, olfaction, synapse assembly, and antigen binding. We provide evidence that balancing selection may have maintained these SV hotspots, which include two independent hotspots on different chromosomes affecting alpha and beta hemoglobin gene clusters. Biomedically, we found that the SV hotspots coincide with breakpoints of clinically relevant, large de novo SVs, significantly more often than genome-wide expectations. As an example, we showed that the breakpoints of multiple large de novo SVs, which lead to idiopathic short stature, coincide with SV hotspots. As such, the mutational instability in SV hotpots likely enables chromosomal breaks that lead to pathogenic structural variation formations. Our study contributes to a better understanding of the mutational landscape of the genome and implicates both mechanistic and adaptive forces in the formation and maintenance of SV hotspots.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3