Geochemical influences on nonenzymatic oligomerization of prebiotically relevant cyclic nucleotides

Author:

Dagar Shikha,Sarkar Susovan,Rajamani Sudha

Abstract

AbstractThe spontaneous emergence of RNA on the early Earth continues to remain an enigma in the field of origins of life. Few studies have looked at the nonenzymatic oligomerization of cyclic nucleotides under neutral to alkaline conditions, in fully dehydrated state. Herein, we systematically investigated the oligomerization of cyclic nucleotides under prebiotically relevant conditions, where starting reactants were subjected to repeated dehydration-rehydration (DH-RH) regimes, like they would have been on an early Earth. DH-RH conditions, a recurring geological theme, are driven by naturally occurring processes including diurnal cycles and tidal pool activity. These conditions have been shown to facilitate uphill oligomerization reactions in terrestrial geothermal niches, which are hypothesized to be pertinent sites for the emergence of life. 2′-3′ and 3′-5′ cyclic nucleotides of one purine-based (adenosine) and one pyrimidine-based (cytidine) system were evaluated in this study. Additionally, the effect of amphiphiles was also investigated. Furthermore, to discern the effect of ‘realistic’ conditions on this process, the reactions were also performed using hot spring water samples from an early Earth analogue environment. Our results showed that the oligomerization of cyclic nucleotides under DH-RH conditions resulted in intact informational oligomers. Amphiphiles increased the stability of, both, the starting monomers and the resultant oligomers. In analogue condition reactions, oligomerization of nucleotides and back-hydrolysis of the resultant oligomers was pronounced. Altogether, this study demonstrates how nonenzymatic oligomerization of cyclic purine and pyrimidine nucleotides, under laboratory-simulated and early Earth analogous conditions, could have resulted in RNA oligomers of a putative RNA World.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3