Spherical: an iterative workflow for assembling metagenomic datasets

Author:

Hitch Thomas,Creevey Christopher J

Abstract

AbstractThe consensus emerging from microbiome studies is that they are far more complex than previously thought, requiring deep sequencing. As deep sequenced datasets provide greater coverage than previous datasets, recovering a higher proportion of reads to the assembly is still a challenge. To tackle this issue, we set of to identify if multiple iterations of assembly would allow for otherwise lost contigs to be formed and studied and if so, how successful is such an avenue at improving the current methodology.A simulated metagenomic dataset was initially used to identify if multiple iterations of assembly produce useable contigs or mis-assembled artefacts were produced. Once we had confirmed that the secondary iterations were producing both accurate contigs without a reduction in contig quality we applied this methodology in the form of Spherical to 3 metagenomic studies.The additional contigs produced by Spherical increased the number of reads aligning to an identified gene by 11–109% compared to the initial iterations assembly. As the size of the dataset increased, as did the amount of data multiple iterations were able to add.AvailabilitySpherical is implemented in Python 2.7 and available for use under a MIT licence agreement at: https://github.com/thh32/Spherical

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3