Accumulation of deleterious mutations during bacterial range expansions

Author:

Bosshard Lars,Dupanloup Isabelle,Tenaillon Olivier,Bruggmann Rémy,Ackermann Martin,Peischl Stephan,Excoffier Laurent

Abstract

AbstractRecent theory predicts that the fitness of pioneer populations can decline when species expand their range, due to high rates of genetic drift on wave fronts making selection less efficient at purging deleterious variants. To test these predictions, we studied the fate of mutator bacteria expanding their range for 1650 generations on agar plates. In agreement with theory, we find that growth abilities of strains with a high mutation rate (HMR lines) decreased significantly over time, unlike strains with a lower mutation rate (LMR lines) that present 3-4 times fewer mutations. Estimation of the distribution of fitness effect (DFE) under a spatially explicit model reveals a mean negative effect for new mutations (-0.38%), but it suggests that both advantageous and deleterious mutations have accumulated during the experiment. Furthermore, we show that the fitness of HMR lines measured in different environments has decreased relative to the ancestor strain, whereas that of LMR lines remained unchanged. Our results thus suggest that successful expanding species are affected by deleterious mutations that accumulate during the expansion process, leading to a drastic impairment of their evolutionary potential.

Publisher

Cold Spring Harbor Laboratory

Reference78 articles.

1. Mutation Load: The Fitness of Individuals in Populations Where Deleterious Alleles Are Abundant;Annual Review of Ecology, Evolution, and Systematics, Vol 43,2012

2. Identity and Function of a Large Gene Network Underlying Mutagenic Repair of DNA Breaks

3. Genome evolution and adaptation in a long-term experiment with Escherichia coli

4. Blundell, J. , S. Levy , S. Venkataram , D. Petrov , D. Fisher et al., 2015 Quantitative evolutionary dynamics of one million barcoded lineages. Bulletin of the American Physical Society 60.

5. Trimmomatic: a flexible trimmer for Illumina sequence data

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3