Integrative cross-species analyses identify deficits in habituation learning as a widely affected mechanism in Autism

Author:

Fenckova Michaela,Asztalos Lenke,Cizek Pavel,Singgih Euginia L.,Blok Laura E.R.,Glennon Jeffrey C.,IntHout Joanna,Zweier Christiane,Eichler Evan E.,Bernier Raphael A.,Asztalos Zoltan,Schenck Annette

Abstract

AbstractBackgroundAlthough habituation is one of the most ancient and fundamental forms of learning, its regulators and relevance for human disease are poorly understood.MethodsWe manipulated the orthologs of 286 genes implicated in intellectual disability (ID) with or without comorbid autism spectrum disorder (ASD) specifically in Drosophila neurons, and tested these models in light-off jump habituation. We dissected neuronal substrates underlying the identified habituation deficits and integrated genotype-phenotype annotations, gene ontologies and interaction networks to determine the clinical features and molecular processes that are associated with habituation deficits.ResultsWe identified more than 100 genes required for habituation learning. For the vast majority of these, 93 genes, a role in habituation learning was previously unknown. These genes characterize ID disorders with overgrowth/macrocephaly and comorbid ASD. Moreover, ASD individuals from the Simons Simplex Collection carrying disruptive de novo mutations in these genes exhibit increased rates of specific aberrant behaviors including stereotypic speech, hyperactivity and irritability. At the molecular level, ID genes required for normal habituation are enriched in synaptic function and converge on Ras-MAPK signaling. Both increased Ras-MAPK signaling in GABAergic and decreased Ras-MAPK signaling in cholinergic neurons specifically inhibit the adaptive habituation response.ConclusionsOur work demonstrates the relevance of habituation learning to autism, identifies an unprecedented number of novel habituation players, supports an emerging role for inhibitory neurons in habituation and reveals an opposing, circuit-level-based mechanism for Ras-MAPK signaling. This establishes habituation as a possible, widely applicable target for pharmacologic intervention in ID/ASD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3