Systematic phenomics analysis of ASD-associated genes reveals shared functions and parallel networks underlying reversible impairments in habituation learning

Author:

McDiarmid Troy A.,Belmadani Manuel,Liang Joseph,Meili Fabian,Mathews Eleanor A.,Mullen Gregory P.,Rand James B.,Mizumoto Kota,Haas Kurt,Pavlidis PaulORCID,Rankin Catharine H.ORCID

Abstract

SUMMARYA major challenge facing the genetics of Autism Spectrum Disorders (ASD) is the large and growing number of candidate risk genes and gene variants of unknown functional significance. Here, we used Caenorhabditis elegans to systematically functionally characterize ASD-associated genes in vivo. Using our custom machine vision system we quantified 26 phenotypes spanning morphology, locomotion, tactile sensitivity, and habituation learning in 87 strains each carrying a mutation in an ortholog of an ASD-associated gene. We identified hundreds of novel genotype-phenotype relationships ranging from severe developmental delays and uncoordinated movement to subtle deficits in sensory and learning behaviors. We clustered genes by similarity in phenomic profiles and used epistasis analysis to discover parallel networks centered on CHD8•chd-7 and NLGN3•nlg-1 that underlie mechanosensory hyper-responsivity and impaired habituation learning. We then leveraged our data for in vivo functional assays to gauge missense variant effect. Expression of wild-type NLG-1 in nlg-1 mutant C. elegans rescued their sensory and learning impairments. Testing the rescuing ability of all conserved ASD-associated neuroligin variants revealed varied partial loss-of-function despite proper subcellular localization. Finally, we used CRISPR-Cas9 auxin inducible degradation to determine that phenotypic abnormalities caused by developmental loss of NLG-1 can be reversed by adult expression. This work charts the phenotypic landscape of ASD-associated genes, offers novel in vivo variant functional assays, and potential therapeutic targets for ASD.

Publisher

Cold Spring Harbor Laboratory

Reference176 articles.

1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th edition). (American Psychiatric Publishing, 2013).

2. Sensory processing in autism spectrum disorders and Fragile X syndrome—From the clinic to animal models

3. Advancing the understanding of autism disease mechanisms through genetics

4. Syndromic autism spectrum disorders: moving from a clinically defined to a molecularly defined approach;Dialogues Clin. Neurosci,2017

5. Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2010;Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators & Centers for Disease Control and Prevention (CDC);MMWR. Surveill. Summ,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3