Abstract
AbstractMice display a wide repertoire of vocalizations that varies with sex, strain, and context. Especially during social interaction, mice emit sequences of ultrasonic vocalizations (USVs) of high complexity. As animals of both sexes vocalize, a reliable attribution of USVs to their emitter is essential.The state-of-the-art in sound localization for USVs in 2D allows spatial localization at a resolution of multiple centimeters. However, animals interact at closer ranges, e.g. snout-to-snout. Hence, improved algorithms are required to reliably assign USVs. We present a novel algorithm, SLIM (Sound Localization via Intersecting Manifolds), that achieves a 3-fold improvement in accuracy (12-14.3mm) using only 4 microphones and extends to many microphones and localization in 3D. This accuracy allows reliable assignment of 84.3% of all USVs in our dataset.We apply SLIM to courtship interactions between adult C57Bl/6J wildtype mice and those carrying a heterozygous Foxp2 variant (R552H). The improved spatial accuracy reveals detailed vocalization preferences for specific spatial relations between the mice. Specifically, vocalization probability, duration, Wiener entropy, and frequency level differed in particular spatial relations between WT females, Foxp2-R552H and WT males.In conclusion, the improved attribution of vocalizations to their emitters provides a foundation for better understanding social vocal behaviors.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献