Modeling the efficacy of CRISPR gene drive for schistosomiasis control

Author:

Grewelle Richard E.ORCID,Perez-Saez Javier,Tycko JoshORCID,Namigai Erica K.O.,Rickards Chloe G.,De Leo Giulio A.

Abstract

AbstractCRISPR gene drives could revolutionize the control of infectious diseases by accelerating the spread of engineered traits that limit parasite transmission in wild populations. While much effort has been spent developing gene drives in mosquitoes, gene drive technology in molluscs has received little attention despite the role of freshwater snails as obligate, intermediate hosts of parasitic flukes causing schistosomiasis – a disease of poverty affecting more than 200 million people worldwide. A successful drive in snails must overcome self-fertilization, which prevents a drive’s spread. Simultaneous hermaphroditism is a feature of snails – distinct from gene drive model organisms – and is not yet incorporated in gene drive models of disease control. Here we developed a novel population genetic model accounting for snails’ sexual and asexual reproduction, susceptibility to parasite infection regulated by multiple alleles, fitness differences between genotypes, and a range of drive characteristics. We then integrated this model with an epidemiological model of schistosomiasis transmission and snail population dynamics. Simulations showed that gene drive establishment can be hindered by a variety of biological and ecological factors, including selfing. However, our model suggests that, under a range of conditions, gene drive mediated immunity in snails could maintain rapid disease reduction achieved by annual chemotherapy treatment of the human population, leading to long-term elimination. These results indicate that gene drives, in coordination with existing public health measures, may become a useful tool to reduce schistosomiasis burden in selected transmission settings with effective CRISPR construct design and close evaluation of the genetic and ecological landscape.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3