Controlling the frequency dynamics of homing gene drives for intermediate outcomes

Author:

Camm Benjamin J.,Fournier-Level AlexandreORCID

Abstract

AbstractGene drives have enormous potential for solving biological issues by forcing the spread of desired alleles through populations. However, to safeguard from the potentially irreversible consequences on natural populations, gene drives with intermediate outcomes that neither fixate nor get removed from the population are of outstanding interest.To elucidate the conditions leading to intermediate gene drive frequency, a stochastic, individual allele-focused gene drive model accessible was developed to simulate the diffusion of a homing gene drive in a population. The frequencies of multiple alleles at a locus targeted by a gene drive were tracked under various scenarios. These explored the effect of gene drive conversion efficiency, strength and frequency of resistance alleles, presence and strength of a fitness cost for the gene drive, its dominance and the level of inbreeding.Four outcomes were consistently observed: Fixation, Loss, Temporary and Equilibrium. The latter two are defined by the frequency of the gene drive peaking then crashing or plateauing, respectively. No single variable determined the outcome of a drive, instead requiring a combination of variables. The difference between the conversion efficiency and resistance level differentiated the Temporary and Equilibrium outcomes. The frequency dynamics of the gene drive within outcomes varied extensively, with different variables driving this dynamics between outcomes.These simulation results highlight the possibility of fine-tuning gene drive outcomes and compensating through biotechnological design constraint imposed by population features. To that end, we provide a web application implementing our model which will guide the safer design of gene drives able to achieve a range of controllable outcome tailored to population management needs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3