G2 stem cells orchestrate time-directed, long-range coordination of calcium signaling during skin epidermal regeneration

Author:

Moore Jessica LORCID,Gao Feng,Matte-Martone CatherineORCID,Du ShuangshuangORCID,Lathrop ElizabethORCID,Ganesan SmirthyORCID,Shao LinORCID,Bhaskar DhananjayORCID,Cox AndyORCID,Hendry Caroline E,Rieck Bastian AORCID,Krishnaswamy SmitaORCID,Greco ValentinaORCID

Abstract

Skin epidermal homeostasis is maintained via constant regeneration by stem cells, which must communicate to balance their self-renewal and differentiation. A key molecular pathway, Ca2+ signaling has been implicated as a signal integrator in developing and wounded epithelial tissues[1, 2, 3, 4]. Yet how stem cells carry out this signaling across a regenerative tissue remains unknown due to significant challenges in studying signaling dynamics in live mice, limiting our understanding of the mechanisms of stem cell communication during homeostasis. To interpret high dimensional signals that have complex spatial and temporal patterns, we combined optimized imaging of Ca2+ signaling in thousands of epidermal stem cells in living mice with a new machine learning tool, Geometric Scattering Trajectory Homology (GSTH). Using a combination of signal processing, data geometry, and topology, GSTH captures patterns of signaling at multiple scales, either between direct or distant stem cell neighbors. Here we show that epidermal stem cells display dynamic intercellular Ca2+ signaling among neighborhoods of up to 10 cells that is surprisingly coordinated and directed through time across a pool of thousands of stem cells. We find that this collective coordination is an emergent property of the stem cell compartment, distinct from excitatory quiescent neuronal tissues. We demonstrate that cycling stem cells, specifically G2 cells, govern homeostatic patterns of Ca2+ signaling. Stem cells in different cell cycle stages dynamically regulate localization of the gap junction component Connexin43 (Cx43). Lastly, we uncouple global from local communication and identify Cx43 as the molecular mediator necessary for connectivity between local signaling neighborhoods. This work provides resolution in how stem cells at different stages of the cell cycle communicate and how that diversity of phases is essential for tissue wide communication and signaling flow during epidermal regeneration. Our approach provides a framework to investigate stem cell populations and their signaling dynamics, previously not possible.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3