Independently paced calcium oscillations in progenitor and differentiated cells in an ex vivo epithelial organ

Author:

Kim Anna A.ORCID,Nguyen Amanda,Marchetti Marco,Montell Denise J.,Pruitt Beth. L.ORCID,O’Brien Lucy ErinORCID

Abstract

ABSTRACTCytosolic calcium is a highly dynamic, tightly regulated, and broadly conserved cellular signal. Calcium dynamics have been studied widely in cellular monocultures, yet in vivo most organs comprise heterogeneous populations of stem and differentiated cells. We examined calcium dynamics in each cell type of the adult Drosophila intestine, a self-renewing epithelial organ where multipotent stem cells give rise to mature absorptive enterocytes and secretory enteroendocrine cells. Here we perform live imaging of whole organs ex vivo, and we employ orthogonal expression of red and green calcium sensors to determine whether calcium oscillations between different cell types are coupled. We show that stem cell daughters adopt strikingly distinct patterns of calcium oscillations when they acquire their terminal fates: Enteroendocrine cells exhibit single-cell calcium oscillations, while enterocytes exhibit rhythmic, long-range calcium waves. These multicellular waves do not propagate through progenitor cells (stem cells and enteroblasts), whose oscillation frequency is approximately half that of enteroendocrine cells. Organ-scale inhibition of gap junctions eliminates calcium oscillations in all three cell types, even, intriguingly, in progenitor and enteroendocrine cells that are surrounded only by enterocytes. Our findings establish that cells adopt fate-specific modes of calcium dynamics as they terminally differentiate and reveal that the oscillatory dynamics of different cell types in a single, coherent epithelium are paced independently.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3